Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 139, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287052

RESUMEN

Domestic goats are distributed worldwide, with approximately 35% of the one billion world goat population occurring in Africa. Ethiopia has 52.5 million goats, ~99.9% of which are considered indigenous landraces deriving from animals introduced to the Horn of Africa in the distant past by nomadic herders. They have continued to be managed by smallholder farmers and semi-mobile pastoralists throughout the region. We report here 57 goat genomes from 12 Ethiopian goat populations sampled from different agro-climates. The data were generated through sequencing DNA samples on the Illumina NovaSeq 6000 platform at a mean depth of 9.71x and 150 bp pair-end reads. In total, ~2 terabytes of raw data were generated, and 99.8% of the clean reads mapped successfully against the goat reference genome assembly at a coverage of 99.6%. About 24.76 million SNPs were generated. These SNPs can be used to study the population structure and genome dynamics of goats at the country, regional, and global levels to shed light on the species' evolutionary trajectory.


Asunto(s)
Genoma , Cabras , Animales , Evolución Biológica , ADN , Etiopía , Cabras/genética
2.
Heredity (Edinb) ; 132(1): 30-42, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37919398

RESUMEN

In this study, we investigated how IBD patterns shared between individuals of the same breed could be informative of its admixture level, with the underlying assumption that the most admixed breeds, i.e. the least genetically isolated, should have a much more fragmented genome. We considered 111 goat breeds (i.e. 2501 individuals) and 156 sheep breeds (i.e. 3304 individuals) from Europe, Africa and Asia, for which beadchip SNP genotypes had been performed. We inferred the breed's level of admixture from: (i) the proportion of the genome shared by breed's members (i.e. "genetic integrity level" assessed from ADMIXTURE software analyses), and (ii) the "AV index" (calculated from Reynolds' genetic distances), used as a proxy for the "genetic distinctiveness". In both goat and sheep datasets, the statistical analyses (comparison of means, Spearman correlations, LM and GAM models) revealed that the most genetically isolated breeds, also showed IBD profiles made up of more shared IBD segments, which were also longer. These results pave the way for further research that could lead to the development of admixture indicators, based on the characterization of intra-breed shared IBD segments, particularly effective as they would be independent of the knowledge of the whole genetic landscape in which the breeds evolve. Finally, by highlighting the fragmentation experienced by the genomes subjected to crossbreeding carried out over the last few generations, the study reminds us of the need to preserve local breeds and the integrity of their adaptive architectures that have been shaped over the centuries.


Asunto(s)
Cruzamiento , Cabras , Humanos , Ovinos , Animales , Genotipo , Cabras/genética , Genómica , África , Polimorfismo de Nucleótido Simple
3.
Animals (Basel) ; 13(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37893897

RESUMEN

Previously, NCAPG was identified as a candidate gene associated with sheep growth traits. This study aimed to investigate the direct role of NCAPG in regulating myogenesis in embryonic myoblast cells and to investigate the association between single-nucleotide polymorphisms (SNPs) in its promoter region and sheep growth traits. The function of NCAPG in myoblast proliferation and differentiation was detected after small interfering RNAs (siRNAs) knocked down the expression of NCAPG. Cell proliferation was detected using CCK-8 assay, EdU proliferation assay, and flow cytometry cell cycle analysis. Cell differentiation was detected via cell immunofluorescence and the quantification of myogenic regulatory factors (MRFs). SNPs in the promoter region were detected using Sanger sequencing and genotyped using the improved multiplex ligation detection reaction (iMLDR®) technique. As a result, a notable decrease (p < 0.01) in the percentage of EdU-positive cells in the siRNA-694-treated group was observed. A significant decrease (p < 0.01) in cell viability after treatment with siRNA-694 for 48 h and 72 h was detected using the CCK-8 method. The quantity of S-phase cells in the siRNA-694 treatment group was significantly decreased (p < 0.01). After interfering with NCAPG in myoblasts during induced differentiation, the relative expression levels of MRFs were markedly (p < 0.05 or p < 0.01) reduced compared with the control group on days 5-7. The myoblast differentiation in the siRNA-694 treatment group was obviously suppressed compared with the control group. SNP1, SNP2, SNP3, and SNP4 were significantly (p < 0.05) associated with all traits except body weight measured at birth and one month of age. SNP5 was significantly (p < 0.05) associated with body weight, body height, and body length in six-month-old sheep. In conclusion, interfering with NCAPG can inhibit the proliferation and differentiation of ovine embryonic myoblasts. SNPs in its promoter region can serve as potential useful markers for selecting sheep growth traits.

4.
Anim Genet ; 54(6): 689-708, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37697736

RESUMEN

Environmental adaptation traits of indigenous African cattle are increasingly being investigated to respond to the need for sustainable livestock production in the context of unpredictable climatic changes. Several studies have highlighted genomic regions under positive selection probably associated with adaptation to environmental challenges (e.g. heat stress, trypanosomiasis, tick and tick-borne diseases). However, little attention has focused on pinpointing the candidate causative variant(s) controlling the traits. This review compiled information from 22 studies on signatures of positive selection in indigenous African cattle breeds to identify regions under positive selection. We highlight some key candidate genome regions and genes of relevance to the challenges of living in extreme environments (high temperature, high altitude, high infectious disease prevalence). They include candidate genes involved in biological pathways relating to innate and adaptive immunity (e.g. BoLAs, SPAG11, IL1RL2 and GFI1B), heat stress (e.g. HSPs, SOD1 and PRLH) and hypoxia responses (e.g. BDNF and INPP4A). Notably, the highest numbers of candidate regions are found on BTA3, BTA5 and BTA7. They overlap with genes playing roles in several biological functions and pathways. These include but are not limited to growth and feed intake, cell stability, protein stability and sweat gland development. This review may further guide targeted genome studies aiming to assess the importance of candidate causative mutations, within regulatory and protein-coding genome regions, to further understand the biological mechanisms underlying African cattle's unique adaption.


Asunto(s)
Genoma , Genómica , Bovinos/genética , Animales , Respuesta al Choque Térmico , Selección Genética , Polimorfismo de Nucleótido Simple
5.
Animals (Basel) ; 13(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37370543

RESUMEN

In our previous study of Hu sheep hair follicles, we found that CRABP2 was highly expressed in DPCs, which suggested that CRABP2 may influence the number of DPCs. In the present study, we aimed to understand the effect of CRABP2 in Hu sheep dermal papilla cells (DPCs). First, we explored the influence of CRABP2 on the ability of Hu sheep DPCs' proliferation. Based on the results obtained from some experiments, such as CCK-8, EDU, qPCR, and Western blot experiment, we found that the overexpression of CRABP2 facilitated the proliferation of DPCs compared to the negative control group. Then, we also detected the effect of CRABP2 on the Wnt/ß-catenin pathway based on the important function of the Wnt/ß-catenin pathway in hair follicles. The results showed that CRABP2 could activate the Wnt/ß-catenin pathway in DPCs, and it rescues the proliferation of DPCs when the Wnt/ß-catenin pathway was inhibited. In summary, our findings indicate that CRABP2 is a vital functional gene in the proliferation of Hu sheep DPCs. Our study will be of great use for revealing the roles of CRABP2 in the hair follicles of Hu sheep.

6.
Front Genet ; 14: 1119024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020995

RESUMEN

Breeding programs involving either centralized nucleus schemes and/or importation of exotic germplasm for crossbreeding were not successful and sustainable in most Africa countries. Community-based breeding programs (CBBPs) are now suggested as alternatives that aim to improve local breeds and concurrently conserve them. Community-based breeding program is unique in that it involves the different actors from the initial phase of design up until implementation of the programs, gives farmers the knowledge, skills and support they need to continue making improvements long into the future and is suitable for low input systems. In Ethiopia, we piloted CBBPs in sheep and goats, and the results show that they are technically feasible to implement, generate genetic gains in breeding goal traits and result in socio-economic impact. In Malawi, CBBPs were piloted in local goats, and results showed substantial gain in production traits of growth and carcass yields. CBBPs are currently being integrated into goat pass-on programs in few NGOs and is out-scaled to local pig production. Impressive results have also been generated from pilot CBBPs in Tanzania. From experiential monitoring and learning, their success depends on the following: 1) identification of the right beneficiaries; 2) clear framework for dissemination of improved genetics and an up/out scaling strategy; 3) institutional arrangements including establishment of breeders' cooperatives to support functionality and sustainability; 4) capacity development of the different actors on animal husbandry, breeding practices, breeding value estimation and sound financial management; 5) easy to use mobile applications for data collection and management; 6) long-term technical support mainly in data management, analysis and feedback of estimated breeding values from committed and accessible technical staff; 7) complementary services including disease prevention and control, proper feeding, and market linkages for improved genotypes and non-selected counterparts; 8) a system for certification of breeding rams/bucks to ensure quality control; 9) periodic program evaluation and impact assessment; and 10) flexibility in the implementation of the programs. Lessons relating to technical, institutional, community dynamics and the innovative approaches followed are discussed.

7.
Animals (Basel) ; 13(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36978593

RESUMEN

Escherichia coli (E. coli) F17 is one of the most common pathogens causing diarrhea in farm livestock. In the previous study, we accessed the transcriptomic and microbiomic profile of E. coli F17-antagonism (AN) and -sensitive (SE) lambs; however, the biological mechanism underlying E. coli F17 infection has not been fully elucidated. Therefore, the present study first analyzed the metabolite data obtained with UHPLC-MS/MS. A total of 1957 metabolites were profiled in the present study, and 11 differential metabolites were identified between E. coli F17 AN and SE lambs (i.e., FAHFAs and propionylcarnitine). Functional enrichment analyses showed that most of the identified metabolites were related to the lipid metabolism. Then, we presented a machine-learning approach (Random Forest) to integrate the microbiome, metabolome and transcriptome data, which identified subsets of potential biomarkers for E. coli F17 infection (i.e., GlcADG 18:0-18:2, ethylmalonic acid and FBLIM1); furthermore, the PCCs were calculated and the interaction network was constructed to gain insight into the crosstalk between the genes, metabolites and bacteria in E. coli F17 AN/SE lambs. By combing classic statistical approaches and a machine-learning approach, our results revealed subsets of metabolites, genes and bacteria that could be potentially developed as candidate biomarkers for E. coli F17 infection in lambs.

8.
Genes (Basel) ; 14(2)2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36833350

RESUMEN

CUT-like homeobox 1 protein (CUX1), also called CUX, CUTL1, and CDP, is a member of the DNA-binding protein homology family. Studies have shown that CUX1 is a transcription factor that plays an important role in the growth and development of hair follicles. The aim of this study was to investigate the effect of CUX1 on the proliferation of Hu sheep dermal papilla cells (DPCs) to reveal the role of CUX1 in hair follicle growth and development. First, the coding sequence (CDS) of CUX1 was amplified by PCR, and then CUX1 was overexpressed and knocked down in DPCs. A Cell Counting Kit-8 (CCK8), 5-ethynyl-2-deoxyuridine (EdU), and cell cycle assays were used to detect the changes in the proliferation and cell cycle of DPCs. Finally, the effects of overexpression and knockdown of CUX1 in DPCs on the expression of WNT10, MMP7, C-JUN, and other key genes in the Wnt/ß-catenin signaling pathway were detected by RT-qPCR. The results showed that the 2034-bp CDS of CUX1 was successfully amplified. Overexpression of CUX1 enhanced the proliferative state of DPCs, significantly increased the number of S-phase cells, and decreased the number of G0/G1-phase cells (p < 0.05). CUX1 knockdown had the opposite effects. It was found that the expression of MMP7, CCND1 (both p < 0.05), PPARD, and FOSL1 (both p < 0.01) increased significantly after overexpression of CUX1 in DPCs, while the expression of CTNNB1 (p < 0.05), C-JUN, PPARD, CCND1, and FOSL1 (all p < 0.01) decreased significantly. In conclusion, CUX1 promotes proliferation of DPCs and affects the expression of key genes of the Wnt/ß-catenin signaling pathway. The present study provides a theoretical basis to elucidate the mechanism underlying hair follicle development and lambskin curl pattern formation in Hu sheep.


Asunto(s)
Metaloproteinasa 7 de la Matriz , Vía de Señalización Wnt , Animales , Ovinos , Metaloproteinasa 7 de la Matriz/metabolismo , Metaloproteinasa 7 de la Matriz/farmacología , Células Cultivadas , Folículo Piloso , Proliferación Celular
9.
Anim Biotechnol ; 34(9): 4580-4587, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36794322

RESUMEN

This study aimed to identify the target genes of IGFBP3(insulin growth factor binding protein)protein and to investigate its target genes effects on the proliferation and differentiation of Hu sheep skeletal muscle cells. IGFBP3 was an RNA-binding protein that regulates mRNA stability. Previous studies have reported that IGFBP3 promotes the proliferation of Hu sheep skeletal muscle cells and inhibits differentiation, but the downstream genes that bind to it have not been reported yet. We predicted the target genes of IGFBP3 through RNAct and sequencing data, and verified by qPCR and RIP(RNA Immunoprecipitation)experiments, and demonstrated GNAI2(G protein subunit alpha i2)as one of the target gene of IGFBP3. After interference with siRNA, we carried out qPCR, CCK8, EdU, and immunofluorescence experiments, and found that GNAI2 can promote the proliferation and inhibit differentiation of Hu sheep skeletal muscle cells. This study revealed the effects of GNAI2 and provided one of the regulatory mechanisms of IGFBP3 protein underlying sheep muscle development.


Asunto(s)
Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Fibras Musculares Esqueléticas , Animales , Ovinos/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , ARN Interferente Pequeño , Diferenciación Celular , Proliferación Celular/genética , Músculo Esquelético/metabolismo
10.
Anim Biotechnol ; 34(5): 1815-1821, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35544537

RESUMEN

Escherichia coli (E. coli) F17 is one of the main pathogens causing diarrhea in young livestock. The specific F17 fimbriae and lipopolysaccharide (LPS) in the surface components of E. coli F17 induces immune activation via interacting with the intestinal epithelial cells (IECs)-expressed innate immune toll-like receptors (TLRs) signaling pathway. In this study, the expression patterns of eight canonical genes from the TLR signaling pathway (IL-6, IL-8, IL-1ß, TLR4, MyD88, CD14, TNF-α and TRAF6) were analyzed in LPS-induced IECs, E. coli F17-infected IECs and ileum tissue of E. coli F17-infected lambs. The results showed that increased expression levels of all the studied genes were observed following post-LPS-induced and E. coli F17-infected treatment, with TLR4 having the highest up-regulated expression multiple (compared to NC, fold change = 17.94 and 20.11, respectively), and CD14 having the lowest up-regulated expression multiple (fold change = 2.68 and 1.59, respectively), and higher expression levels of all the studied TLR signaling pathway genes were observed in ileum tissue of E. coli F17 antagonistic (AN) lambs than in E. coli F17 sensitive (SE) lambs. Furthermore, when compared to LPS-induced IECs, E. coli F17-infected IECs showed a more pronounced increase in the expression of IL6, TLR4 and TNF-α, indicating the different roles of these genes in the IECs resistance to E. coli F17 infection. Our results demonstrate that the TLR signaling pathway likely promotes immune activation and provide the first evidence that TLRs have a significant potential to protect against E. coli F17 infections.


Asunto(s)
Infecciones por Escherichia coli , Enfermedades de las Ovejas , Animales , Ovinos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa , Transducción de Señal/genética , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/veterinaria , Células Epiteliales/metabolismo , Enfermedades de las Ovejas/inducido químicamente , Enfermedades de las Ovejas/genética
11.
Anim Biotechnol ; 34(7): 2691-2700, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36001393

RESUMEN

This study aimed to understand the expression level of YAP1 in the skeletal muscle of Hu sheep and to reveal the regulatory mechanism of YAP1 on Hu sheep skeletal muscle satellite cells (SMSCs). Previous research by our group has found that YAP1 may affect the growth and development of Hu sheep skeletal muscle. In the present study, we found the expression of YAP1 in the skeletal muscle is higher than in other tissues of Hu sheep. Then, we detected the effect of YAP1 on proliferation and differentiation in Hu sheep SMSCs. According to the results of qPCR, CCK-8, EDU, and Western blot, compared to the group of negative control, overexpression of YAP1 promoted the proliferation and inhibited the differentiation of SMSCs according to the results of qPCR, CCK-8, EDU, Western blot, while the interference of YAP1 was on the contrary. Overall, our study suggests that YAP1 is an important functional molecule in the growth and development of skeletal muscle by regulating the proliferation and differentiation of SMSCs. These findings are of great use for understanding the roles of YAP1 in the skeletal muscle of Hu sheep.


Asunto(s)
Células Satélite del Músculo Esquelético , Animales , Diferenciación Celular , Proliferación Celular , Músculo Esquelético , Ovinos
12.
Anim Biotechnol ; 34(7): 3016-3026, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36200839

RESUMEN

Dorper and Hu sheep exhibit different characteristics in terms of reproduction, growth, and meat quality. Comparison of the genomes of two breeds help to reveal important genomic information. In this study, whole genome resequencing of 30 individuals (Dorper, DB and Hu sheep, HY) identified 15,108,125 single nucleotide polymorphisms (SNPs). Population differentiation (Fst) and cross population extended haplotype homozygosity (XP-EHH) were performed for selective signal analysis. In total, 106 and 515 overlapped genes were present in both the Fst results and XP-EHH results in HY vs DB and in DB vs HY, respectively. In HY vs DB, 106 genes were enriched in 12 GO terms and 83 KEGG pathways, such as ATP binding (GO:0005524) and PI3K-Akt signaling pathway (oas04151). In DB vs HY, 515 genes were enriched in 109 GO terms and 215 KEGG pathways, such as skeletal muscle cell differentiation (GO:0035914) and MAPK signaling pathway (oas04010). According to the annotation results, we identified a series of candidate genes associated with reproduction (UNC5C, BMPR1B, and GLIS1), meat quality (MECOM, MEF2C, and MYF6), and immunity (GMDS, GALK1, and ITGB4). Our investigation has uncovered genomic information for important traits in sheep and provided a basis for subsequent studies of related traits.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Selección Genética , Humanos , Ovinos/genética , Animales , Fosfatidilinositol 3-Quinasas/genética , Genoma/genética , Análisis de Secuencia de ADN , Genómica/métodos , Polimorfismo de Nucleótido Simple/genética
13.
Vet Parasitol Reg Stud Reports ; 36: 100786, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36436908

RESUMEN

The present study aimed to investigate the activity dynamics of Ixodes ricinus group ticks in a forest located in north-western Tunisia (Aïn Draham, Jendouba District) and assess the variation of abiotic factors (temperature, Normalized Difference Vegetation Index and relative humidity) during one year survey from September 2016 to August 2017 using the dragging sampling method. A total of 116 questing ticks was collected from the vegetation consisting of 47 adults (19 females and 28 males, sex ratio M:F = 1.47), 45 nymphs and 24 larvae representing 40.5, 38.8 and 20.7% of the total collected specimens, respectively. Adult I. ricinus were collected during October-May, nymphs during May-August and larvae during July-September. There were statistically significant correlations between adult tick numbers and mean daily relative humidity (Pearson r = 0.77; p = 0.003) and mean daily temperature (r = -0.74; p = 0.006). The comparison of 16S rDNA sequences from 20 adult ticks of approximately 444 bp length showed variability among 11 sequences. There was a low genetic variability (<1%) among the I. ricinus isolates collected from the forest. The amplicons showed >99% identity with I. ricinus and Ixodes inopinatus sequences from different countries and published in GenBank. These results should be complemented by further surveys in other Tunisian regions to better understand the influence of environmental factors on the biology of I. ricinus and the occurrence of sympatric I. inopinatus ticks. Different molecular markers should be used for better understanding of their taxonomic status.


Asunto(s)
Ixodes , Masculino , Femenino , Animales , Estaciones del Año , Filogenia , Túnez , Bosques , Ninfa
14.
Anim Biotechnol ; : 1-9, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36384387

RESUMEN

Previous studies have shown that melatonin has a certain regulatory effect on the growth of sheep wool. However, the mechanism of melatonin action remains unknown. In the present study, we aimed to understand the role of exogenous melatonin in the dermal papilla cells of Hu sheep. To confirm the optimal melatonin treatment regimen for Hu sheep dermal papilla cells, we detected the cell viability by exposing them to different concentrations of melatonin and different treatment times. The results showed that cell viability was best when dermal papilla cells were treated with 1000 pg/ml of melatonin for 48 h. According to the results of qPCR, CCK-8, EDU, Western blot, and Flow cytometry analysis, we found that 1000 pg/ml melatonin promoted the proliferation and inhibited the apoptosis of dermal papilla cells compared with the exogenous melatonin blank group (control group). Furthermore, we also found that 1000 pg/ml of melatonin promoted the cell cycle progress of dermal papilla cells according to the results of qPCR and Flow cytometry analysis. Overall, our findings showed that melatonin plays an important role in the dermal papilla cells of Hu sheep.

15.
Genomics ; 114(5): 110448, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35964803

RESUMEN

African sheep manifest diverse but distinct physio-anatomical traits, which are the outcomes of natural- and human-driven selection. Here, we generated 34.8 million variants from 150 indigenous northeast African sheep genomes sequenced at an average depth of ∼54× for 130 samples (Ethiopia, Libya) and ∼20× for 20 samples (Sudan). These represented sheep from diverse environments, tail morphology and post-Neolithic introductions to Africa. Phylogenetic and model-based admixture analysis provided evidence of four genetic groups corresponding to altitudinal geographic origins, tail morphotypes and possible historical introduction and dispersal of the species into and across the continent. Running admixture at higher levels of K (6 ≤ K ≤ 25), revealed cryptic levels of genome intermixing as well as distinct genetic backgrounds in some populations. Comparative genomic analysis identified targets of selection that spanned conserved haplotype structures overlapping clusters of genes and gene families. These were related to hypoxia responses, ear morphology, caudal vertebrae and tail skeleton length, and tail fat-depot structures. Our findings provide novel insights underpinning morphological variation and response to human-driven selection and environmental adaptation in African indigenous sheep.


Asunto(s)
Adaptación Fisiológica , Genoma , Aclimatación , Adaptación Fisiológica/genética , Animales , Etiopía , Humanos , Filogenia , Polimorfismo de Nucleótido Simple , Selección Genética , Ovinos/genética
16.
Genes (Basel) ; 13(8)2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-36011349

RESUMEN

Previous genome-wide association studies (GWAS) have found that LAP3 may have the potential function to impact sheep muscle development. In order to further explore whether LAP3 expression has an important role in the development of sheep embryonic myoblasts, we conducted the spatiotemporal expression profile analysis of LAP3 at the tissue and cellular level. Then we used small interfering RNA and eukaryotic recombinant vectors to perform gain/loss-of-function analysis of LAP3. CCK-8 detection, EdU staining, and flow cytometry were used to investigate the impact of LAP3 knockdown or overexpression on the proliferation of embryonic myoblasts. In addition, cell phenotype observation, MyHC indirect immunofluorescence, and quantitative detection of the expression changes of myogenic regulatory factors (MRFs) were used to explore the effect of LAP3 on myogenic differentiation. The results showed that the LAP3 expression level in muscle tissue of fetuses was significantly higher than that in newborn lambs and adult sheep, and its expression level on day 3 of differentiation was also significantly higher than that in the proliferation phase and other differentiation time points. LAP3 silencing could significantly increase cell viability and EdU-positive cells, as well as prolonging the length of S phase of myoblasts to promote proliferation, while the results were reversed when LAP3 was overexpressed. Moreover, LAP3 silencing significantly hindered myotube formation and down-regulated the expression levels of MRFs from day 5 to day 7 of terminal differentiation, while the results were reversed when LAP3 was highly expressed. Overall, our results suggested that the expression of LAP3 impacts on the development of sheep embryonic myoblasts which provides an important theoretical basis for molecular breeding of meat production in sheep.


Asunto(s)
Estudio de Asociación del Genoma Completo , Leucil Aminopeptidasa , Animales , Proliferación Celular , Leucil Aminopeptidasa/genética , Desarrollo de Músculos/genética , Mioblastos/metabolismo , Factores Reguladores Miogénicos/genética , Ovinos/genética
17.
Genes (Basel) ; 13(7)2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35886025

RESUMEN

Early growth response factor 1 (EGR1) is a zinc-finger transcription factor that plays a vital role in the development of hair follicles. According to our previous studies, EGR1 is a transcriptional promoter of the bone morphogenetic protein 7 (BMP7), a candidate gene involved in the proliferation of dermal papilla cells. Since hair follicles are the basis of lambskin pattern formation and dermal papilla cells (DPCs) act on hair follicle growth, in order to elucidate the role of EGR1 and hair follicles, this study aimed to investigate the biological role of EGR1 in DPCs. In our study, the EGR1 coding sequence (CDS) region was firstly cloned by polymerase chain reaction, and bioinformatics analysis was performed. Then, the function of EGR1 was detected by 5-ethynyl-2'-deoxyuridine (EDU) and Cell Counting Kit-8 (CCK8), and Western blot (WB) was conducted to analyze the cellular effect of EGR1 on DPCs. The proliferative effect of EGR1 on DPCs was also further confirmed by detecting its expression by qPCR and WB on marker genes of proliferation, including PCNA and CDK2. The sequence of the EGR1 CDS region of a lamb was successfully cloned, and its nucleic acid sequence was analyzed and found to be highly homologous to Rattus norvegicus, Mus musculus, Bos taurus and Homo sapiens. Predictive analysis of the protein encoded by EGR1 revealed that it is an extra-membrane protein, and not a secretory protein, with subcellular localization in the nucleus and cytoplasm. The proliferative effect of DPCs was significantly stronger (p < 0.01) in EGR1 up-regulated DPCs compared to the controls, while the opposite result was observed in EGR1 down-regulated DPCs. Markers of proliferation including PCNA and CDK2 also appeared to be differentially upregulated in EGR1 gene overexpression compared to the controls, with the opposite result in EGR1 gene downregulation. In summary, our study revealed that EGR1 promotes the proliferation of DPCs, and we speculate that EGR1 may be closely associated with hair follicle growth and development.


Asunto(s)
Regulación de la Expresión Génica , Folículo Piloso , Animales , Bovinos , Proliferación Celular/genética , Células Cultivadas , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/farmacología , Ratones , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas , Ovinos/genética
18.
Front Vet Sci ; 9: 819917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498757

RESUMEN

It has long been recognized that enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for vomiting and diarrhea. E. coli F17, a main subtype of ETEC, is characterized by high morbidity and mortality in young livestock. However, the transcriptomic basis underlying E. coli F17 infection has not been fully understood. In the present study, RNA sequencing was conducted to explore the expression profiles of mRNAs and long non-coding RNAs (lncRNAs) in the jejunum of lambs who were identified as resistant or sensitive to E. coli F17 that was obtained in a challenge experiment. A total of 772 differentially expressed (DE) mRNAs and 190 DE lncRNAs were detected between the E. coli F17-resistance and E. coli F17-sensitive lambs (i.e., TFF2, LOC105606142, OLFM4, LYPD8, REG4, APOA4, TCONS_00223467, and TCONS_00241897). Then, a two-step machine learning approach (RX) combination Random Forest and Extreme Gradient Boosting were performed, which identified 16 mRNAs and 17 lncRNAs as potential biomarkers, within which PPP2R3A and TCONS_00182693 were prioritized as key biomarkers involved in E. coli F17 infection. Furthermore, functional enrichment analysis showed that peroxisome proliferator-activated receptor (PPAR) pathway was significantly enriched in response to E. coli F17 infection. Our finding will help to improve the knowledge of the mechanisms underlying E. coli F17 infection and may provide novel targets for future treatment of E. coli F17 infection.

19.
Anim Genet ; 53(3): 447-451, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35428998

RESUMEN

In recent times, community-based breeding programs (CBBPs) have been advocated as the best strategy for genetic improvement of local breeds in smallholder farms in developing countries. Since 2009, CBBPs have been implemented for Ethiopian Bonga and Menz sheep to improve growth rates resulting in significant genetic gains in 6-month weights. With the hypothesis that selection could be impacting their genomes, we systematically screened for possible genome changes in the two breeds by analyzing 600K BeadChip genotype data of 151 individuals (with the highest breeding values for 6-month weights) from CBBP flocks against 98 individuals from non-CBBP flocks. We observed no differences in genetic diversity and demographic dynamics between CBBP and non-CBBP flocks. Selection signature analysis employing ROH, logistic regression genome-wide association study , FST , XP-EHH and iHS revealed 5 (Bonga) and 11 (Menz) overlapping regions under selection, that co-localized with QTLs for production (body size/weight, growth, milk yield), meat/milk quality, and health/parasite resistance, suggesting that the decade-long selection has likely started to impact their genomes. However, genome-wide genetic differentiation between the CBBP and non-CBBP flocks is not yet clearly evident.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Animales , Etiopía , Genómica , Genotipo , Polimorfismo de Nucleótido Simple , Selección Genética , Ovinos/genética
20.
Genes (Basel) ; 13(3)2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328074

RESUMEN

MicroRNA (miRNA) is of great importance to muscle growth and development, including the regulation of the proliferation and differentiation of skeletal muscle satellite cells (SMSCs). In our research group's previous study, we found that miR-181a is differentially expressed in the longissimus dorsi muscle of Hu sheep at different stages. We speculated that miR-181a may participate in the growth and development process of Hu sheep. To understand the mechanism of miR-181a regulating the growth and development of Hu sheep skeletal muscle, we extracted skeletal muscle satellite cells from the longissimus dorsi muscle of 3-month-old Hu sheep fetuses and performed a series of experiments. Our results showed that miR-181a suppressed SMSCs' proliferation using QRT-PCR, Western blot, CCK-8, EDU, and Flow cytometry cycle tests. In addition, QRT-PCR, Western blot, and immunofluorescence indicated that miR-181a facilitated the differentiation of SMSCs. Then, we used dual-luciferase reporter gene detection, QRT-PCR, and Western blot to find that the Yes1-related transcription regulator (YAP1) is the target gene of miR-181a. Our study supplies a research basis for understanding the regulation mechanism of miR-181a on the growth of Hu sheep skeletal muscle.


Asunto(s)
MicroARNs , Células Satélite del Músculo Esquelético , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , MicroARNs/genética , Ovinos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...